scholarly journals Increased Turnover but Little Change in the Carbon Balance of High-Arctic Tundra Exposed to Whole Growing Season Warming

2004 ◽  
Vol 36 (3) ◽  
pp. 298-307 ◽  
Author(s):  
Fleur L. Marchand ◽  
Ivan Nijs ◽  
Hans J. de Boeck ◽  
Fred Kockelbergh ◽  
Sofie Mertens ◽  
...  
2016 ◽  
Vol 121 (5) ◽  
pp. 1236-1248 ◽  
Author(s):  
Philipp R. Semenchuk ◽  
Casper T. Christiansen ◽  
Paul Grogan ◽  
Bo Elberling ◽  
Elisabeth J. Cooper

2015 ◽  
Vol 12 (23) ◽  
pp. 19781-19817
Author(s):  
A. E. Cassidy ◽  
A. Christen ◽  
G. H. R. Henry

Abstract. Soil carbon stored in high-latitude permafrost landscapes is threatened by warming, and could contribute significant amounts of carbon to the atmosphere and hydrosphere as permafrost thaws. Permafrost disturbances, especially active layer detachments and retrogressive thaw slumps, have increased in frequency and magnitude across the Fosheim Peninsula, Ellesmere Island, Canada. To determine the effects of retrogressive thaw slumps on net ecosystem exchange (NEE) of CO2 in high Arctic tundra, we used two eddy covariance (EC) tower systems to simultaneously and continuously measure CO2 fluxes from a disturbed site and the surrounding undisturbed tundra. During the 32-day measurement period in the 2014 growing season the undisturbed tundra was a small net sink (NEE = −0.12 g C m−2 d−1); however, the disturbed terrain of the retrogressive thaw slump was a net source (NEE = +0.39 g C m−2 d−1). Over the measurement period, the undisturbed tundra sequestered 3.84 g C m−2, while the disturbed tundra released 12.48 g C m−2. Before full leaf out in early July, the undisturbed tundra was a small source of CO2, but shifted to a sink for the remainder of the sampling season (July), whereas the disturbed tundra remained a source of CO2 throughout the season. A static chamber system was also used to measure fluxes in the footprints of the two towers, in both disturbed and undisturbed tundra, and fluxes were partitioned into ecosystem respiration (Re) and gross primary production (GPP). Average GPP and Re found in disturbed tundra were smaller (+0.41 μmol m−2 s−1 and +0.50 μmol m−2 s−1, respectively) than those found in undisturbed tundra (+1.21 μmol m−2 s−1 and +1.00 μmol m−2 s−1, respectively). Our measurements indicated clearly that the permafrost disturbance changed the high Arctic tundra system from a sink to a source for CO2 during the growing season.


2016 ◽  
Vol 13 (8) ◽  
pp. 2291-2303 ◽  
Author(s):  
Alison E. Cassidy ◽  
Andreas Christen ◽  
Gregory H. R. Henry

Abstract. Soil carbon stored in high-latitude permafrost landscapes is threatened by warming and could contribute significant amounts of carbon to the atmosphere and hydrosphere as permafrost thaws. Thermokarst and permafrost disturbances, especially active layer detachments and retrogressive thaw slumps, are present across the Fosheim Peninsula, Ellesmere Island, Canada. To determine the effects of retrogressive thaw slumps on net ecosystem exchange (NEE) of CO2 in high Arctic tundra, we used two eddy covariance (EC) tower systems to simultaneously and continuously measure CO2 fluxes from a disturbed site and the surrounding undisturbed tundra. During the 32-day measurement period in the 2014 growing season, the undisturbed tundra was a small net sink (NEE  =  −0.1 g C m−2 d−1); however, the disturbed terrain of the retrogressive thaw slump was a net source (NEE  =  +0.4 g C m−2 d−1). Over the measurement period, the undisturbed tundra sequestered 3.8 g C m−2, while the disturbed tundra released 12.5 g C m−2. Before full leaf-out in early July, the undisturbed tundra was a small source of CO2 but shifted to a sink for the remainder of the sampling season (July), whereas the disturbed tundra remained a source of CO2 throughout the season. A static chamber system was also used to measure daytime fluxes in the footprints of the two towers, in both disturbed and undisturbed tundra, and fluxes were partitioned into ecosystem respiration (Re) and gross primary production (GPP). Average GPP and Re found in disturbed tundra were smaller (+0.40 µmol m−2 s−1 and +0.55 µmol m−2 s−1, respectively) than those found in undisturbed tundra (+1.19 µmol m−2 s−1 and +1.04 µmol m−2 s−1, respectively). Our measurements indicated clearly that the permafrost disturbance changed the high Arctic tundra system from a sink to a source for CO2 during the majority of the growing season (late June and July).


2017 ◽  
Vol 7 (23) ◽  
pp. 10233-10242 ◽  
Author(s):  
Jacob Nabe-Nielsen ◽  
Signe Normand ◽  
Francis K. C. Hui ◽  
Laerke Stewart ◽  
Christian Bay ◽  
...  

1994 ◽  
Vol 72 (7) ◽  
pp. 940-945 ◽  
Author(s):  
R. Lennihan ◽  
D. M. Chapin ◽  
L. G. Dickson

Nostoc commune, a colonial cyanobacterium, has been suggested as an important contributor of nitrogen to terrestrial ecosystems in the Canadian High Arctic, yet little is known about the ecophysiology of this organism in arctic environments. This study focused on the physiological performance of macroscopic colonies of N. commune found on Devon Island, N.W.T. The objectives were to examine the influence of temperature, colony morphology, and seasonal phenology on nitrogen fixation rates and the effects of light and temperature on photosynthesis. Maximum rates of acetylene reduction in N. commune (2119 nmol C2H4∙g−1∙h−1) were higher than those previously recorded for arctic N. commune but lower than values reported for temperate poulations. Depending on the time of the growing season, the temperature optimum for acetylene reduction varied from 15 °C to greater than 20 °C. Photosynthetic temperature optima did not occur below 20–25 °C (the highest temperatures measured). Light saturation of photosynthesis was reached at low levels of irradiance (100–150 μmol∙m−2∙s−1 PPFD). Acetylene reduction rates varied strongly with colony morphology. Thin, fragile, flattened colonies had higher rates than thicker, more resilient, flattened colonies or spherical colonies. Cold post-thaw temperatures appeared to delay the recovery of maximum nitrogen fixation rates for 2–3 weeks following the onset of the growing season. Compared with two other species of cyanobacteria present on Truelove Lowland (Gloeocapsa alpina and Gleotrichia sp.), N. commune had higher rates of nitrogen fixation. Key words: Nostoc commune, cyanobacteria, High Arctic, nitrogen fixation, photosynthesis.


2021 ◽  
Author(s):  
Lauri Heiskanen ◽  
Juha-Pekka Tuovinen ◽  
Aleksi Räsänen ◽  
Tarmo Virtanen ◽  
Sari Juutinen ◽  
...  

<p>Abstract</p><p>Northern mires have sequestered substantial amounts of atmospheric carbon since the last glacial period forming one of the largest carbon pools in the biosphere (Hugelius et al., 2020). Current global warming is causing the subarctic and arctic regions warm rapidly, two to three times as fast as the rest of the world (Masson-Delmotte et al., 2018), which will affect the carbon balance of these mires.</p><p>In Kaamanen, northern Finland, we studied carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) exchange between patterned mesotrophic fen and the atmosphere, both on ecosystem and plant community level. The ecosystem level measurements were conducted by utilizing eddy covariance method, while the fluxes on plant community scale were measured with flux chambers. The studied fen can be described as a mosaic of strings and flarks (or hummocks and hollows, respectively). The microtopography of the string-flark continuum form four main plant community types with varying water table conditions and vegetation composition. The measurements took place in 2017–2018. The two years in question were contrasting in their meteorological and environmental conditions. The 2017 growing season had average temperature, but high precipitation sum, while 2018 growing season was warm and dry. In July 2018 a north-western Europe-wide heatwave caused a month-long drought period at the site. Compared to 2017, the annual carbon balance of the Kaamanen fen was affected by earlier onset of photosynthesis in spring and the drought event during summer 2018.</p><p>We found that the annual carbon balance of the fen did not differ markedly between the studied years, even though the meteorological and environmental conditions did. The earlier onset of growing season in 2018 strengthened the CO<sub>2</sub> sink of the ecosystem, but this gain was counterbalanced by the later drought period. Additionally, we found strong spatial variation in CO<sub>2</sub> and CH<sub>4</sub> dynamics between the main plant communities. Most of the variation in ecosystem level carbon exchange could be explained by the variation in water table level, soil temperature and vegetation characteristics, which were also the environmental factors that varied between the plant community types.</p><p> </p><p>References</p><p>Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B., Treat, C., Turetsky, M., Voigt, C. and Yu, Z.: Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw, Proceedings of the National Academy of Sciences - PNAS, 117, 20438–20446, doi:10.1073/pnas.1916387117, 2020.</p><p>Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M. and Waterfield T. (Eds.): Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, World Meteorological Organization, Geneva, Switzerland, 2018.</p>


2018 ◽  
Author(s):  
Tim Eckhardt ◽  
Christian Knoblauch ◽  
Lars Kutzbach ◽  
Gillian Simpson ◽  
Evgeny Abakumov ◽  
...  

Abstract. Arctic tundra ecosystems are currently facing rates of amplified climate change. This is critical as these ecosystems store significant amounts of carbon in their soils, which can be mineralized to CO2 and CH4 and released to the atmosphere. To understand how the CO2 net ecosystem exchange (NEE) fluxes will react to changing climatic conditions, it is necessary to understand the individual responses of the physiological processes contributing to CO2 NEE. Therefore, this study aimed: (i) to partition NEE fluxes at the soil-plant-atmosphere interface in an arctic tundra ecosystem; and (ii) to identify the main environmental drivers of these fluxes. Hereby, the NEE fluxes were partitioned into gross primary productivity (GPP) and ecosystem respiration (Reco) and further into autotrophic (RA) and heterotrophic respiration (RH). The study examined flux data collected during the growing season in 2015 using closed chamber measurements in a polygonal tundra landscape in the Lena River Delta, northeastern Siberia. The measured fluxes on the microscale (1 m–10 m) were used to model the NEE, GPP, Reco, RH, RA and net ecosystem production (NPP) over the growing season. Here, for the first time, the differing response of in situ measured RA and RH fluxes from permafrost-affected soils to hydrological conditions have been examined. It was shown that low RA fluxes are associated to a high water table, most likely due to the submersion of mosses, while an effect of water table fluctuations on RH fluxes was not observed. Furthermore, this work found the polygonal tundra in the Lena River Delta to be a sink for atmospheric CO2 during the growing season. Spatial heterogeneity was apparent with the net CO2 uptake at a wet, depressed polygon center being more than twice as high as that measured at a drier polygon rim. In addition to higher GPP fluxes, the differences in NEE between the two microsites were caused by lower Reco fluxes at the center compared to the rim. Here, the contrasting hydrological conditions caused the CO2 flux differences between the microsites, where high water levels lad to lower decomposition rates due to anoxic conditions.


2019 ◽  
Vol 16 (7) ◽  
pp. 1543-1562 ◽  
Author(s):  
Tim Eckhardt ◽  
Christian Knoblauch ◽  
Lars Kutzbach ◽  
David Holl ◽  
Gillian Simpson ◽  
...  

Abstract. Arctic tundra ecosystems are currently facing amplified rates of climate warming. Since these ecosystems store significant amounts of soil organic carbon, which can be mineralized to carbon dioxide (CO2) and methane (CH4), rising temperatures may cause increasing greenhouse gas fluxes to the atmosphere. To understand how net the ecosystem exchange (NEE) of CO2 will respond to changing climatic and environmental conditions, it is necessary to understand the individual responses of the processes contributing to NEE. Therefore, this study aimed to partition NEE at the soil–plant–atmosphere interface in an arctic tundra ecosystem and to identify the main environmental drivers of these fluxes. NEE was partitioned into gross primary productivity (GPP) and ecosystem respiration (Reco) and further into autotrophic (RA) and heterotrophic respiration (RH). The study examined CO2 flux data collected during the growing season in 2015 using closed-chamber measurements in a polygonal tundra landscape in the Lena River Delta, northeastern Siberia. To capture the influence of soil hydrology on CO2 fluxes, measurements were conducted at a water-saturated polygon center and a well-drained polygon rim. These chamber-measured fluxes were used to model NEE, GPP, Reco, RH, RA, and net primary production (NPP) at the pedon scale (1–10 m) and to determine cumulative growing season fluxes. Here, the response of in situ measured RA and RH fluxes from permafrost-affected soils of the polygonal tundra to hydrological conditions have been examined. Although changes in the water table depth at the polygon center sites did not affect CO2 fluxes from RH, rising water tables were linked to reduced CO2 fluxes from RA. Furthermore, this work found the polygonal tundra in the Lena River Delta to be a net sink for atmospheric CO2 during the growing season. The NEE at the wet, depressed polygon center was more than twice that at the drier polygon rim. These differences between the two sites were caused by higher GPP fluxes due to a higher vascular plant density and lower Reco fluxes due to oxygen limitation under water-saturated conditions at the polygon center in comparison to the rim. Hence, soil hydrological conditions were one of the key drivers for the different CO2 fluxes across this highly heterogeneous tundra landscape.


Sign in / Sign up

Export Citation Format

Share Document